Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Scientometrics ; : 1-31, 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20244837

ABSTRACT

COVID-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood continues surging, researchers have been disadvantaged by not having access to a platform that can quickly synthesize emerging information and link the new knowledge to the latent knowledge foundation. Aiming to fill this gap, we propose a research framework and develop a dashboard that can assist scientists in identifying, retrieving, and understanding COVID-19 knowledge from the ocean of scholarly articles. Incorporating principal component decomposition (PCD), a knowledge mode-based search approach, and hierarchical topic tree (HTT) analysis, the proposed framework profiles the COVID-19 research landscape, retrieves topic-specific latent knowledge foundation, and visualizes knowledge structures. The regularly updated dashboard presents our research results. Addressing 127,971 COVID-19 research papers from PubMed, the PCD topic analysis identifies 35 research hotspots, along with their inner correlations and fluctuating trends. The HTT result segments the global knowledge landscape of COVID-19 into clinical and public health branches and reveals the deeper exploration of those studies. To supplement this analysis, we additionally built a knowledge model from research papers on the topic of vaccination and fetched 92,286 pre-Covid publications as the latent knowledge foundation for reference. The HTT analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization.

2.
Front Res Metr Anal ; 8: 1149091, 2023.
Article in English | MEDLINE | ID: covidwho-2301960

ABSTRACT

While the COVID-19 pandemic morphs into less malignant forms, the virus has spawned a series of poorly understood, post-infection symptoms with staggering ramifications, i. e., long COVID (LC). This bibliometric study profiles the rapidly growing LC research domain [5,243 articles from PubMed and Web of Science (WoS)] to make its knowledge content more accessible. The article addresses What? Where? Who? and When? questions. A 13-topic Concept Grid presents bottom-up topic clusters. We break out those topics with other data fields, including disciplinary concentrations, topical details, and information on research "players" (countries, institutions, and authors) engaging in those topics. We provide access to results via a Dashboard website. We find a strongly growing, multidisciplinary LC research domain. That domain appears tightly connected based on shared research knowledge. However, we also observe notable concentrations of research activity in different disciplines. Data trends over 3 years of LC research suggest heightened attention to psychological and neurodegenerative symptoms, fatigue, and pulmonary involvement.

3.
Food Chem Toxicol ; : 113511, 2022 Nov 27.
Article in English | MEDLINE | ID: covidwho-2242296

ABSTRACT

The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.

4.
Scientometrics ; 127(9): 5227-5231, 2022.
Article in English | MEDLINE | ID: covidwho-2014327

ABSTRACT

Since the first Global Tech Mining (GTM) conference was held in Atlanta in 2011, the GTM conference has created a platform to connect tech mining researchers, exchange ideas and research progress, and promote collaborations. When it came to its 10th anniversary in 2020, COVID-19 forced the GTM conference into an online format. In tumultuous times for ST&I research activity, the GTM conference sought to focus on several issues: How to better collect and combine multiple "large data" sources? How to analyze these data effectively? And how to utilize these results more powerfully in ST&I management? In this collection, 15 papers are selected after evaluating by the science advisory committee, the guest editor team, and our peer review experts to address the following aspects regarding "tech mining": (1) DATA: Maximizing the potential of traditional and novel data; (2) METHODS: Advancing and integrating methods; (3) APPLICATIONS: Innovative analyses translating to usefulintelligence.

5.
Oncol Rep ; 47(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1518658

ABSTRACT

The devastating complications of coronavirus disease 2019 (COVID­19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS­CoV­2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID­19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID­19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot­product approach was used initially to identify potential CFs that affect COVID­19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID­19 core literature (~1­year­old) did not allow sufficient time for the direct effects of numerous CFs on COVID­19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature­related discovery approach was used to augment the COVID­19 core literature­based 'direct impact' CFs with discovery­based 'indirect impact' CFs [CFs were identified in the non­COVID­19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID­19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID­19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID­19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID­19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID­19 CFs. On the whole, the present study demonstrates that COVID­19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.


Subject(s)
COVID-19/epidemiology , Gastrointestinal Neoplasms/epidemiology , COVID-19/etiology , COVID-19/immunology , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/immunology , Humans , Risk Factors , SARS-CoV-2/physiology , Socioeconomic Factors
6.
Toxicol Rep ; 8: 1616-1637, 2021.
Article in English | MEDLINE | ID: covidwho-1377846

ABSTRACT

The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.

7.
Toxicological Risk Assessment and Multi-System Health Impacts from Exposure ; : 359-372, 2021.
Article in English | PMC | ID: covidwho-1343091
8.
Front Res Metr Anal ; 5: 594060, 2020.
Article in English | MEDLINE | ID: covidwho-1191729

ABSTRACT

The unprecedented, explosive growth of the COVID-19 domain presents challenges to researchers to keep up with research knowledge within the domain. This article profiles this research to help make that knowledge more accessible via overviews and novel categorizations. We provide websites offering means for researchers to probe more deeply to address specific questions. We further probe and reassemble COVID-19 topical content to address research issues concerning topical evolution and emphases on tactical vs. strategic approaches to mitigate this pandemic and reduce future viral threats. Data suggest that heightened attention to strategic, immunological factors is warranted. Connecting with and transferring in research knowledge from outside the COVID-19 domain demand a viable COVID-19 knowledge model. This study provides complementary topical categorizations to facilitate such modeling to inform future Literature-Based Discovery endeavors.

9.
Toxicol Rep ; 7: 1448-1458, 2020.
Article in English | MEDLINE | ID: covidwho-894246

ABSTRACT

A degraded/dysfunctional immune system appears to be the main determinant of serious/fatal reaction to viral infection (for COVID-19, SARS, and influenza alike). There are four major approaches being employed or considered presently to augment or strengthen the immune system, in order to reduce adverse effects of viral exposure. The three approaches that are focused mainly on augmenting the immune system are based on the concept that pandemics/outbreaks can be controlled/prevented while maintaining the immune-degrading lifestyles followed by much of the global population. The fourth approach is based on identifying and introducing measures aimed at strengthening the immune system intrinsically in order to minimize future pandemics/outbreaks. Specifically, the four measures are: 1) restricting exposure to virus; 2) providing reactive/tactical treatments to reduce viral load; 3) developing vaccines to prevent, or at least attenuate, the infection; 4) strengthening the immune system intrinsically, by a) identifying those factors that contribute to degrading the immune system, then eliminating/reducing them as comprehensively, thoroughly, and rapidly as possible, and b) replacing the eliminated factors with immune-strengthening factors. This paper focuses on vaccine safety. A future COVID-19 vaccine appears to be the treatment of choice at the national/international level. Vaccine development has been accelerated to achieve this goal in the relatively near-term, and questions have arisen whether vaccine safety has been/is being/will be compromised in pursuit of a shortened vaccine development time. There are myriad mechanisms related to vaccine-induced, and natural infection-induced, infections that could adversely impact vaccine effectiveness and safety. This paper summarizes many of those mechanisms.

10.
Int J Mol Med ; 46(5): 1599-1602, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-807275

ABSTRACT

In response to the SARS­CoV­2 outbreak, and the resulting COVID­19 pandemic, a global competition to develop an anti­COVID­19 vaccine has ensued. The targeted time frame for initial vaccine deployment is late 2020. The present article examines whether short­term, mid­term, and long­term vaccine safety can be achieved under such an accelerated schedule, given the myriad vaccine­induced mechanisms that have demonstrated adverse effects based on previous clinical trials and laboratory research. It presents scientific evidence of potential pitfalls associated with eliminating critical phase II and III clinical trials, and concludes that there is no substitute currently available for long­term human clinical trials to ensure long­term human safety.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , Animals , COVID-19/economics , COVID-19 Vaccines/economics , Clinical Trials as Topic , Cost-Benefit Analysis , Humans
11.
Food Chem Toxicol ; 145: 111687, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-713649

ABSTRACT

Coronavirus disease 2019 (COVID-19) and previous pandemics have been viewed almost exclusively as virology problems, with toxicology problems mostly being ignored. This perspective is not supported by the evolution of COVID-19, where the impact of real-life exposures to multiple toxic stressors degrading the immune system is followed by the SARS-CoV-2 virus exploiting the degraded immune system to trigger a chain of events ultimately leading to COVID-19. This immune system degradation from multiple toxic stressors (chemical, physical, biological, psychosocial stressors) means that attribution of serious consequences from COVID-19 should be made to the virus-toxic stressors nexus, not to any of the nexus constituents in isolation. The leading toxic stressors (identified in this study as contributing to COVID-19) are pervasive, contributing to myriad chronic diseases as well as immune system degradation. They increase the likelihood for comorbidities and mortality associated with COVID-19. For the short-term, tactical/reactive virology-focused treatments are of higher priority than strategic/proactive toxicology-focused treatments, although both could be implemented in parallel to reinforce each other. However, for long-term pandemic prevention, toxicology-based approaches should be given higher priority than virology-based approaches. Since current COVID-19 treatments globally ignore the toxicology component almost completely, only limited benefits can be expected from these treatments.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Hazardous Substances/adverse effects , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Coronavirus Infections/etiology , Coronavirus Infections/psychology , Healthy Lifestyle , Humans , Pneumonia, Viral/etiology , Pneumonia, Viral/psychology , Quarantine , SARS-CoV-2
12.
Int J Mol Med ; 46(2): 463-466, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-647885

ABSTRACT

Since March, 2020, in response to the COVID­19 pandemic, many countries have been on lockdown (at different levels of severity), restricting many activities and businesses that involve gatherings of large numbers of people in close proximity. Currently (early June, 2020), countries across the globe are in different stages of easing lockdown restrictions. Public policies for behaviors and actions during this transition period vary widely across countries and within country jurisdictions. The present editorial will address potential policies that could minimize resurgence of the present pandemic (the 'second­wave') and reduce the likelihood and severity of similar future pandemics.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2/pathogenicity , Communicable Disease Control , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL